diff --git a/Clustering_Analysis/Paper_figures.R b/Clustering_Analysis/Paper_figures.R index e2242b17dc7de7f2f39092accb2d53e1b815cef7..365a95b5626d0d3d8944ba0c782a8f00aea20f94 100644 --- a/Clustering_Analysis/Paper_figures.R +++ b/Clustering_Analysis/Paper_figures.R @@ -41,3 +41,31 @@ p_m <- ggplot(data = df_m, mapping = aes(x = UMAPh_1, y = UMAPh_2, color = Annot geom_point(size = .6) Seurat::LabelClusters(plot = p_m, id = "Annotation", color = "black", size = 5) +# Figure S12 - CD4 CAR-T +df$CART_CD4_MAGIC[is.na(df$CART_CD4_MAGIC)] <- "NOCAR" +t <- table(df$CART_CD4_MAGIC, df$orig.ident) +t <- rbind(t, colSums(t)) +rownames(t) <- c("CART_CD4_MAGIC", "NOCAR", "Total") +t <- data.frame(t(t)) +t$CART_CD4_MAGIC_perc <- 100 * (t$CART_CD4_MAGIC / t$Total) +t$Condition <- stringr::str_split_fixed(rownames(t), "-", 2)[,2] + +# Fig. S12 - A +ggplot(data = t, mapping = aes(x = Condition, y = CART_CD4_MAGIC_perc, color = Condition)) + + theme_bw(base_size = 18) + + theme(legend.position = "none") + + geom_point(size = 3) + + ylab("CD4 WPRE+ (% of total cells)") + + xlab("") + + scale_y_continuous(limits = c(0,6)) + +# Fig. S12 - B +t <- df %>% filter(CART_CD4_MAGIC == "CART_CD4_MAGIC") %>% + group_by(PROP.Condition, Annotation) %>% + summarise(TotCells = n()) +ggplot(data = t, mapping = aes(x = PROP.Condition, y = TotCells, fill = Annotation)) + + theme_bw(base_size = 18) + + theme(legend.position = "right") + + geom_bar(stat = "identity", position = "fill") + + xlab("") + + ylab("count")