library('dplyr') library('ggplot2') library('reshape2') library('RColorBrewer') #heatmap THR vs CTRL hallmark_ds <- c("Thr_CTRL") clusters <- dir ("/DATA/31/molteni/vexas_bm/results/integration/GSEA_OSR_Wu/Thr_CTRL/") clusters <- gsub("Thr_CTRL_markers_cluster_", "", clusters) wdir="/DATA/31/molteni/vexas_bm/results/integration" hallmark.full <- data.frame() for (ds in hallmark_ds) { for (i in clusters) { s <- paste(ds,"markers_cluster", i,sep="_") #qui cambiare 1 con i e inserire ciclo for ff <- paste(wdir, "GSEA_OSR_Wu/Thr_CTRL", s, "tables", paste(s, "NA-gsea-h.all.v7.2.symbols.txt", sep = "-"), sep = "/") ds.t <- read.table(ff, header = T, sep = "\t") ds.t.filt <- ds.t[,c("ID", "setSize", "enrichmentScore", "NES", "pvalue", "p.adjust", "qvalues"), drop = FALSE] ds.t.filt$Dataset <- paste(ds,i,sep="_") if (nrow(hallmark.full) == 0) { hallmark.full <- ds.t.filt } else { hallmark.full <- rbind(hallmark.full, ds.t.filt) } } } hallmark.full_1 <- hallmark.full ### ONE HEATMAP ### all_hallmark <- hallmark.full_1 all_hallmark$star <- cut(all_hallmark$p.adjust, breaks=c(-Inf, 0.001, 0.01, 0.05, Inf), label=c("***", "**", "*", "")) # Create column of significance labels all_hallmark$ID <- gsub(x = all_hallmark$ID, "HALLMARK_", "") hallmark.order <- all_hallmark %>% group_by(ID) %>% summarise(Pos = sum(NES)) hallmark.order.terms <- hallmark.order[order(hallmark.order$Pos, decreasing = FALSE), "ID", drop = FALSE] all_hallmark.nn <- melt(reshape2::dcast(all_hallmark, ID ~ Dataset, value.var="NES"), id.vars = c("ID")) colnames(all_hallmark.nn) <- c("ID", "Dataset", "NES") all_hallmark.pp <- melt(reshape2::dcast(all_hallmark, ID ~ Dataset, value.var="star"), id.vars = c("ID")) colnames(all_hallmark.pp) <- c("ID", "Dataset", "STARS") all_hallmark.tt <- merge(all_hallmark.nn,all_hallmark.pp) all_hallmark.tt$ID <- factor(all_hallmark.tt$ID, levels = hallmark.order.terms$ID) level_order <- c("Thr_CTRL_Late_erythroid_cells", "Thr_CTRL_Mid_erythroid_cells", "Thr_CTRL_Early_erythroid", "Thr_CTRL_Erythroid_progenitors", "Thr_CTRL_MEP", "Thr_CTRL_MEP_BASO_MAST_prog", "Thr_CTRL_Plasmacytoid_dentritic_cells" , "Thr_CTRL_CD14+_CD16_low_monocytes", "Thr_CTRL_CD14+_monocytes_2", "Thr_CTRL_CD14+_monocytes_1", "Thr_CTRL_Myeloid_dendritic_cells", "Thr_CTRL_Immature_Neutrophil", "Thr_CTRL_Prolif_GP", "Thr_CTRL_GP", "Thr_CTRL_HSC_MPP", "Thr_CTRL_MLP", "Thr_CTRL_CD4_T_cells", "Thr_CTRL_CD8_T_cells", "Thr_CTRL_B_cells", "Thr_CTRL_Plasma_cells", "Thr_CTRL_VEXAS_GP", "Thr_CTRL_VEXAS_NK_cells") #ALL all_hallmark.tt$Dataset <- factor(all_hallmark.tt$Dataset, levels =level_order ) p.hallmark <- ggplot(all_hallmark.tt, aes(x = Dataset, y = ID)) + theme_bw(base_size = 12) + theme(axis.text.x = element_text(angle = 45, hjust = 1)) + theme(axis.text.x=element_text(size=10))+ theme(axis.text.y=element_text(size=8))+ geom_tile(aes(fill = NES), colour = "white") + geom_text(aes(label = STARS), color="black", size=2) + ggtitle("GSEA OSR Thr Patients vs Control Pool") + theme(plot.title = element_text(hjust = 0.5, vjust = 10), title = element_text(size=20, face = 'bold'))+ theme(legend.title = element_text(size = 10))+ scale_fill_gradientn(colours = colorRampPalette(rev(brewer.pal(11,"RdBu")))(100), #limits = c(-3.5, 3.5), limits = c(-4.5, 4.5), na.value = "grey" #guide = guide_colourbar(reverse = TRUE) ) + ylab("") + xlab("") + coord_fixed(ratio = 0.4) plot.dir="/DATA/31/molteni/vexas_bm/results/integration/heatmap_OSR_Wu/" ggsave(filename = paste(plot.dir, paste("hallmark_Thr_CTRL", "heatmap.pdf", sep = "-"), sep = "/"), plot = p.hallmark, width = 15, height = 15, dpi = 600) #heatmap VAL vs CTRL hallmark_ds <- c("Val_CTRL") clusters <- dir ("/DATA/31/molteni/vexas_bm/results/integration/GSEA_OSR_Wu/Val_CTRL/") clusters <- gsub("Val_CTRL_markers_cluster_", "", clusters) wdir="/DATA/31/molteni/vexas_bm/results/integration" hallmark.full <- data.frame() for (ds in hallmark_ds) { for (i in clusters) { s <- paste(ds,"markers_cluster", i,sep="_") #qui cambiare 1 con i e inserire ciclo for ff <- paste(wdir, "GSEA_OSR_Wu/Val_CTRL", s, "tables", paste(s, "NA-gsea-h.all.v7.2.symbols.txt", sep = "-"), sep = "/") ds.t <- read.table(ff, header = T, sep = "\t") ds.t.filt <- ds.t[,c("ID", "setSize", "enrichmentScore", "NES", "pvalue", "p.adjust", "qvalues"), drop = FALSE] ds.t.filt$Dataset <- paste(ds,i,sep="_") if (nrow(hallmark.full) == 0) { hallmark.full <- ds.t.filt } else { hallmark.full <- rbind(hallmark.full, ds.t.filt) } } } hallmark.full_2 <- hallmark.full ### ONE HEATMAP ### all_hallmark <- hallmark.full_2 all_hallmark$star <- cut(all_hallmark$p.adjust, breaks=c(-Inf, 0.001, 0.01, 0.05, Inf), label=c("***", "**", "*", "")) # Create column of significance labels all_hallmark$ID <- gsub(x = all_hallmark$ID, "HALLMARK_", "") hallmark.order <- all_hallmark %>% group_by(ID) %>% summarise(Pos = sum(NES)) hallmark.order.terms <- hallmark.order[order(hallmark.order$Pos, decreasing = FALSE), "ID", drop = FALSE] all_hallmark.nn <- melt(reshape2::dcast(all_hallmark, ID ~ Dataset, value.var="NES"), id.vars = c("ID")) colnames(all_hallmark.nn) <- c("ID", "Dataset", "NES") all_hallmark.pp <- melt(reshape2::dcast(all_hallmark, ID ~ Dataset, value.var="star"), id.vars = c("ID")) colnames(all_hallmark.pp) <- c("ID", "Dataset", "STARS") all_hallmark.tt <- merge(all_hallmark.nn,all_hallmark.pp) all_hallmark.tt$ID <- factor(all_hallmark.tt$ID, levels = hallmark.order.terms$ID) # level_order <- c("Val_CTRL_Late_erythroid_cells", "Val_CTRL_Mid_erythroid_cells", "Val_CTRL_Early_erythroid", "Val_CTRL_Erythroid_progenitors", "Val_CTRL_MEP", "Val_CTRL_MEP_BASO_MAST_prog", "Val_CTRL_Plasmacytoid_dentritic_cells" , "Val_CTRL_CD14+_CD16_low_monocytes", "Val_CTRL_CD14+_monocytes_2", "Val_CTRL_CD14+_monocytes_1", "Val_CTRL_Myeloid_dendritic_cells", "Val_CTRL_Immature_Neutrophil", "Val_CTRL_Prolif_GP", "Val_CTRL_GP", "Val_CTRL_HSC_MPP", "Val_CTRL_MLP", "Val_CTRL_CD4_T_cells", "Val_CTRL_CD8_T_cells", "Val_CTRL_B_cells", "Val_CTRL_Plasma_cells", "Val_CTRL_Endothelial_cells", "Val_CTRL_VEXAS_GP", "Val_CTRL_VEXAS_NK_cells") #ALL all_hallmark.tt$Dataset <- factor(all_hallmark.tt$Dataset, levels =level_order ) p.hallmark <- ggplot(all_hallmark.tt, aes(x = Dataset, y = ID)) + theme_bw(base_size = 12) + theme(axis.text.x = element_text(angle = 45, hjust = 1)) + theme(axis.text.x=element_text(size=10))+ theme(axis.text.y=element_text(size=8))+ geom_tile(aes(fill = NES), colour = "white") + geom_text(aes(label = STARS), color="black", size=2) + ggtitle("GSEA Val OSR Patients vs Control Pool") + theme(plot.title = element_text(hjust = 0.5, vjust = 10), title = element_text(size=20, face = 'bold'))+ theme(legend.title = element_text(size = 10))+ scale_fill_gradientn(colours = colorRampPalette(rev(brewer.pal(11,"RdBu")))(100), #limits = c(-3.5, 3.5), limits = c(-4.5, 4.5), na.value = "grey" #guide = guide_colourbar(reverse = TRUE) ) + ylab("") + xlab("") + coord_fixed(ratio = 0.4) plot.dir="/DATA/31/molteni/vexas_bm/results/integration/heatmap_OSR_Wu/" ggsave(filename = paste(plot.dir, paste("hallmark_Val_CTRL", "heatmap.pdf", sep = "-"), sep = "/"), plot = p.hallmark, width = 15, height = 15, dpi = 600) #heatmap LEU vs CTRL hallmark_ds <- c("Leu_CTRL") clusters <- dir ("/DATA/31/molteni/vexas_bm/results/integration/GSEA_OSR_Wu/Leu_CTRL/") clusters <- gsub("Leu_CTRL_markers_cluster_", "", clusters) wdir="/DATA/31/molteni/vexas_bm/results/integration" hallmark.full <- data.frame() for (ds in hallmark_ds) { for (i in clusters) { s <- paste(ds,"markers_cluster", i,sep="_") #qui cambiare 1 con i e inserire ciclo for ff <- paste(wdir, "GSEA_OSR_Wu/Leu_CTRL", s, "tables", paste(s, "NA-gsea-h.all.v7.2.symbols.txt", sep = "-"), sep = "/") ds.t <- read.table(ff, header = T, sep = "\t") ds.t.filt <- ds.t[,c("ID", "setSize", "enrichmentScore", "NES", "pvalue", "p.adjust", "qvalues"), drop = FALSE] ds.t.filt$Dataset <- paste(ds,i,sep="_") if (nrow(hallmark.full) == 0) { hallmark.full <- ds.t.filt } else { hallmark.full <- rbind(hallmark.full, ds.t.filt) } } } hallmark.full_3 <- hallmark.full ### ONE HEATMAP ### all_hallmark <- hallmark.full_3 all_hallmark$star <- cut(all_hallmark$p.adjust, breaks=c(-Inf, 0.001, 0.01, 0.05, Inf), label=c("***", "**", "*", "")) # Create column of significance labels all_hallmark$ID <- gsub(x = all_hallmark$ID, "HALLMARK_", "") hallmark.order <- all_hallmark %>% group_by(ID) %>% summarise(Pos = sum(NES)) hallmark.order.terms <- hallmark.order[order(hallmark.order$Pos, decreasing = FALSE), "ID", drop = FALSE] all_hallmark.nn <- melt(reshape2::dcast(all_hallmark, ID ~ Dataset, value.var="NES"), id.vars = c("ID")) colnames(all_hallmark.nn) <- c("ID", "Dataset", "NES") all_hallmark.pp <- melt(reshape2::dcast(all_hallmark, ID ~ Dataset, value.var="star"), id.vars = c("ID")) colnames(all_hallmark.pp) <- c("ID", "Dataset", "STARS") all_hallmark.tt <- merge(all_hallmark.nn,all_hallmark.pp) all_hallmark.tt$ID <- factor(all_hallmark.tt$ID, levels = hallmark.order.terms$ID) # level_order <- c("Leu_CTRL_Late_erythroid_cells", "Leu_CTRL_Mid_erythroid_cells", "Leu_CTRL_Early_erythroid", "Leu_CTRL_Erythroid_progenitors", "Leu_CTRL_MEP", "Leu_CTRL_MEP_BASO_MAST_prog", "Leu_CTRL_Plasmacytoid_dentritic_cells" , "Leu_CTRL_CD14+_CD16_low_monocytes", "Leu_CTRL_CD14+_monocytes_2", "Leu_CTRL_CD14+_monocytes_1", "Leu_CTRL_Myeloid_dendritic_cells", "Leu_CTRL_Immature_Neutrophil", "Leu_CTRL_Prolif_GP", "Leu_CTRL_GP", "Leu_CTRL_HSC_MPP", "Leu_CTRL_MLP", "Leu_CTRL_CD4_T_cells", "Leu_CTRL_CD8_T_cells", "Leu_CTRL_B_cells", "Leu_CTRL_Plasma_cells", "Leu_CTRL_Endothelial_cells", "Leu_CTRL_VEXAS_GP", "Leu_CTRL_VEXAS_NK_cells") #ALL all_hallmark.tt$Dataset <- factor(all_hallmark.tt$Dataset, levels =level_order ) p.hallmark <- ggplot(all_hallmark.tt, aes(x = Dataset, y = ID)) + theme_bw(base_size = 12) + theme(axis.text.x = element_text(angle = 45, hjust = 1)) + theme(axis.text.x=element_text(size=10))+ theme(axis.text.y=element_text(size=8))+ geom_tile(aes(fill = NES), colour = "white") + geom_text(aes(label = STARS), color="black", size=2) + ggtitle("GSEA Leu OSR Patients vs Control Pool") + theme(plot.title = element_text(hjust = 0.5, vjust = 10), title = element_text(size=20, face = 'bold'))+ theme(legend.title = element_text(size = 10))+ scale_fill_gradientn(colours = colorRampPalette(rev(brewer.pal(11,"RdBu")))(100), #limits = c(-3.5, 3.5), limits = c(-4.5, 4.5), na.value = "grey" #guide = guide_colourbar(reverse = TRUE) ) + ylab("") + xlab("") + coord_fixed(ratio = 0.4) plot.dir="/DATA/31/molteni/vexas_bm/results/integration/heatmap_OSR_Wu/" ggsave(filename = paste(plot.dir, paste("hallmark_Leu_CTRL", "heatmap.pdf", sep = "-"), sep = "/"), plot = p.hallmark, width = 15, height = 15, dpi = 600) ###ONE HEATMAP all_hallmark <- rbind (hallmark.full_1, hallmark.full_2, hallmark.full_3) all_hallmark$star <- cut(all_hallmark$p.adjust, breaks=c(-Inf, 0.001, 0.01, 0.05, Inf), label=c("***", "**", "*", "")) # Create column of significance labels all_hallmark$ID <- gsub(x = all_hallmark$ID, "HALLMARK_", "") hallmark.order <- all_hallmark %>% group_by(ID) %>% summarise(Pos = sum(NES)) hallmark.order.terms <- hallmark.order[order(hallmark.order$Pos, decreasing = FALSE), "ID", drop = FALSE] hallmark.order.terms <- hallmark.order[order(hallmark.order$ID, decreasing = TRUE), "ID", drop = FALSE] all_hallmark.nn <- melt(reshape2::dcast(all_hallmark, ID ~ Dataset, value.var="NES"), id.vars = c("ID")) colnames(all_hallmark.nn) <- c("ID", "Dataset", "NES") all_hallmark.pp <- melt(reshape2::dcast(all_hallmark, ID ~ Dataset, value.var="star"), id.vars = c("ID")) colnames(all_hallmark.pp) <- c("ID", "Dataset", "STARS") all_hallmark.tt <- merge(all_hallmark.nn,all_hallmark.pp) all_hallmark.tt$ID <- factor(all_hallmark.tt$ID, levels = hallmark.order.terms$ID) #ONE VS ALL COMPARISON ## level_order <- c("Thr_CTRL_Late_erythroid_cells","Val_CTRL_Late_erythroid_cells","Leu_CTRL_Late_erythroid_cells", "Thr_CTRL_Mid_erythroid_cells","Val_CTRL_Mid_erythroid_cells","Leu_CTRL_Mid_erythroid_cells", "Thr_CTRL_Early_erythroid", "Val_CTRL_Early_erythroid", "Leu_CTRL_Early_erythroid", "Thr_CTRL_Erythroid_progenitors", "Val_CTRL_Erythroid_progenitors","Leu_CTRL_Erythroid_progenitors", "Thr_CTRL_MEP","Val_CTRL_MEP","Leu_CTRL_MEP", "Thr_CTRL_MEP_BASO_MAST_prog","Val_CTRL_MEP_BASO_MAST_prog","Leu_CTRL_MEP_BASO_MAST_prog", "Thr_CTRL_Plasmacytoid_dentritic_cells", "Val_CTRL_Plasmacytoid_dentritic_cells","Leu_CTRL_Plasmacytoid_dentritic_cells", "Thr_CTRL_CD14+_CD16_low_monocytes","Val_CTRL_CD14+_CD16_low_monocytes","Leu_CTRL_CD14+_CD16_low_monocytes", "Thr_CTRL_CD14+_monocytes_2","Val_CTRL_CD14+_monocytes_2","Leu_CTRL_CD14+_monocytes_2", "Thr_CTRL_CD14+_monocytes_1", "Val_CTRL_CD14+_monocytes_1","Leu_CTRL_CD14+_monocytes_1", "Thr_CTRL_Myeloid_dendritic_cells", "Val_CTRL_Myeloid_dendritic_cells","Leu_CTRL_Myeloid_dendritic_cells", "Thr_CTRL_Immature_Neutrophil","Val_CTRL_Immature_Neutrophil","Leu_CTRL_Immature_Neutrophil", "Thr_CTRL_Prolif_GP","Val_CTRL_Prolif_GP","Leu_CTRL_Prolif_GP", "Thr_CTRL_GP","Val_CTRL_GP","Leu_CTRL_GP", "Thr_CTRL_HSC_MPP", "Val_CTRL_HSC_MPP","Leu_CTRL_HSC_MPP", "Thr_CTRL_MLP", "Val_CTRL_MLP","Leu_CTRL_MLP", "Thr_CTRL_CD4_T_cells", "Val_CTRL_CD4_T_cells","Leu_CTRL_CD4_T_cells", "Thr_CTRL_CD8_T_cells", "Val_CTRL_CD8_T_cells", "Leu_CTRL_CD8_T_cells", "Thr_CTRL_B_cells","Val_CTRL_B_cells","Leu_CTRL_B_cells", "Thr_CTRL_Plasma_cells","Val_CTRL_Plasma_cells","Leu_CTRL_Plasma_cells", "Val_CTRL_Endothelial_cells", "Leu_CTRL_Endothelial_cells", "Thr_CTRL_VEXAS_GP", "Val_CTRL_VEXAS_GP","Leu_CTRL_VEXAS_GP", "Thr_CTRL_VEXAS_NK_cells", "Val_CTRL_VEXAS_NK_cells", "Leu_CTRL_VEXAS_NK_cells") #ALL all_hallmark.tt$Dataset <- factor(all_hallmark.tt$Dataset, levels =level_order ) p.hallmark <- ggplot(all_hallmark.tt, aes(x = Dataset, y = ID)) + theme_bw(base_size = 12) + theme(axis.text.x = element_text(angle = 45, hjust = 1)) + theme(axis.text.x=element_text(size=10))+ theme(axis.text.y=element_text(size=8))+ geom_tile(aes(fill = NES), colour = "white") + geom_text(aes(label = STARS), color="black", size=2) + ggtitle("GSEA - All Mutations OSR Patients vs Control") + theme(plot.title = element_text(hjust = 0.5, vjust = 10), title = element_text(size=20, face = 'bold'))+ theme(legend.title = element_text(size = 10))+ scale_fill_gradientn(colours = colorRampPalette(rev(brewer.pal(11,"RdBu")))(100), #limits = c(-3.5, 3.5), limits = c(-4.5, 4.5), na.value = "grey" #guide = guide_colourbar(reverse = TRUE) ) + ylab("") + xlab("") + coord_fixed(ratio = 0.4) plot.dir="/DATA/31/molteni/vexas_bm/results/integration/heatmap_OSR_Wu/" ggsave(filename = paste(plot.dir, paste("hallmark_ALLMut", "heatmap.pdf", sep = "-"), sep = "/"), plot = p.hallmark, width = 20, height = 10, dpi = 600) ## PAZIENTI vs CONTROLLI ## #heatmap PZ vs CTRL hallmark_ds <- c("Pz_CTRL") clusters <- dir ("/DATA/31/molteni/vexas_bm/results/integration/GSEA_OSR_Wu/Pz_CTRL/") clusters <- gsub("Pz_CTRL_markers_cluster_", "", clusters) wdir="/DATA/31/molteni/vexas_bm/results/integration" hallmark.full <- data.frame() for (ds in hallmark_ds) { for (i in clusters) { s <- paste(ds,"markers_cluster", i,sep="_") #qui cambiare 1 con i e inserire ciclo for ff <- paste(wdir, "GSEA_OSR_Wu/Pz_CTRL", s, "tables", paste(s, "NA-gsea-h.all.v7.2.symbols.txt", sep = "-"), sep = "/") ds.t <- read.table(ff, header = T, sep = "\t") ds.t.filt <- ds.t[,c("ID", "setSize", "enrichmentScore", "NES", "pvalue", "p.adjust", "qvalues"), drop = FALSE] ds.t.filt$Dataset <- paste(ds,i,sep="_") if (nrow(hallmark.full) == 0) { hallmark.full <- ds.t.filt } else { hallmark.full <- rbind(hallmark.full, ds.t.filt) } } } hallmark.full_4 <- hallmark.full ### ONE HEATMAP ### all_hallmark <- hallmark.full_4 all_hallmark$star <- cut(all_hallmark$p.adjust, breaks=c(-Inf, 0.001, 0.01, 0.05, Inf), label=c("***", "**", "*", "")) # Create column of significance labels all_hallmark$ID <- gsub(x = all_hallmark$ID, "HALLMARK_", "") hallmark.order <- all_hallmark %>% group_by(ID) %>% summarise(Pos = sum(NES)) hallmark.order.terms <- hallmark.order[order(hallmark.order$Pos, decreasing = FALSE), "ID", drop = FALSE] all_hallmark.nn <- melt(reshape2::dcast(all_hallmark, ID ~ Dataset, value.var="NES"), id.vars = c("ID")) colnames(all_hallmark.nn) <- c("ID", "Dataset", "NES") all_hallmark.pp <- melt(reshape2::dcast(all_hallmark, ID ~ Dataset, value.var="star"), id.vars = c("ID")) colnames(all_hallmark.pp) <- c("ID", "Dataset", "STARS") all_hallmark.tt <- merge(all_hallmark.nn,all_hallmark.pp) all_hallmark.tt$ID <- factor(all_hallmark.tt$ID, levels = hallmark.order.terms$ID) level_order <- c("Pz_CTRL_Late_erythroid_cells", "Pz_CTRL_Mid_erythroid_cells", "Pz_CTRL_Early_erythroid", "Pz_CTRL_Erythroid_progenitors", "Pz_CTRL_MEP", "Pz_CTRL_MEP_BASO_MAST_prog", "Pz_CTRL_Plasmacytoid_dentritic_cells" , "Pz_CTRL_CD14+_CD16_low_monocytes", "Pz_CTRL_CD14+_monocytes_2", "Pz_CTRL_CD14+_monocytes_1", "Pz_CTRL_Myeloid_dendritic_cells", "Pz_CTRL_Immature_Neutrophil", "Pz_CTRL_Prolif_GP", "Pz_CTRL_GP", "Pz_CTRL_HSC_MPP", "Pz_CTRL_MLP", "Pz_CTRL_CD4_T_cells", "Pz_CTRL_CD8_T_cells", "Pz_CTRL_B_cells", "Pz_CTRL_Plasma_cells", "Pz_CTRL_Endothelial_cells", "Pz_CTRL_VEXAS_GP", "Pz_CTRL_VEXAS_NK_cells") #ALL all_hallmark.tt$Dataset <- factor(all_hallmark.tt$Dataset, levels =level_order ) p.hallmark <- ggplot(all_hallmark.tt, aes(x = Dataset, y = ID)) + theme_bw(base_size = 12) + theme(axis.text.x = element_text(angle = 45, hjust = 1)) + theme(axis.text.x=element_text(size=10))+ theme(axis.text.y=element_text(size=8))+ geom_tile(aes(fill = NES), colour = "white") + geom_text(aes(label = STARS), color="black", size=2) + ggtitle("GSEA OSR Patients vs Control Pool") + theme(plot.title = element_text(hjust = 0.5, vjust = 10), title = element_text(size=20, face = 'bold'))+ theme(legend.title = element_text(size = 10))+ scale_fill_gradientn(colours = colorRampPalette(rev(brewer.pal(11,"RdBu")))(100), #limits = c(-3.5, 3.5), limits = c(-4.5, 4.5), na.value = "grey" #guide = guide_colourbar(reverse = TRUE) ) + ylab("") + xlab("") + coord_fixed(ratio = 0.4) plot.dir="/DATA/31/molteni/vexas_bm/results/integration/heatmap_OSR_Wu/" ggsave(filename = paste(plot.dir, paste("hallmark_Pz_CTRL", "heatmap.pdf", sep = "-"), sep = "/"), plot = p.hallmark, width = 15, height = 15, dpi = 600)